
CHAPTER 1.2

INTRODUCTION TO C++ PROGRAMMING

Outline

1. Introduction to C++ Programming

2. Comment

3. Variables and Constants

4. Basic C++ Data Types

5. Simple Program: Printing a Line of Text

6. Simple Program: Adding Two Integers

7. a Simple Program: Calculating the area of a Circle

1. Introduction to C++ Programming

• C++ language
- Facilitates a structured and disciplined approach to

computer program design

• Following are several examples
- The examples illustrate many important features of C++

- Each example is analyzed one statement at a time.

Outline

4

1. Comments

2. Load <iostream>

3. main

3.1 Print "Welcome

to C++\n"

3.2 exit (return 0)

Program Output

1 // Fig. 1.2: fig01_02.cpp

2 // A first program in C++

3 #include <iostream>

4

5 int main()

6 {

7 cout << "Welcome to C++!\n";

8

9 return 0; // indicate that program

ended successfully10}

Welcome to C++!

preprocessor directive
Message to the C++ preprocessor.
Lines beginning with # are preprocessor directives.
#include <iostream> tells the preprocessor to
include the contents of the file <iostream>, which
includes input/output operations (such as printing to
the screen).

Comments
Written between /* and */ or following a //.
Improve program readability and do not cause the
computer to perform any action.

C++ programs contain one or more functions, one of
which must be main
Parenthesis are used to indicate a function
int means that main "returns" an integer value.

A left brace { begins the body of every function
and a right brace } ends it.

Prints the string of characters contained between the
quotation marks.

The entire line, including std::cout, the <<
operator, the string "Welcome to C++!\n" and
the semicolon (;), is called a statement.

All statements must end with a semicolon.

return is a way to exit a function
from a function.
return 0, in this case, means that
the program terminated normally.

2. Comment

• Message to everyone who reads source program and
is used to document source code.

• Makes the program more readable and eye catching.

• Non executable statement in the C++.

• Always neglected by compiler.

• Can be written anywhere and any number of times.

• Use as many comments as possible in C++ program.

2. Comment

1. Single Line Comment

•starts with “//” symbol.

•Remaining line after “//” symbol is ignored by browser.

•End of Line is considered as End of the comment.

2. Multiple Line Comment (Block Comment)

•starts with “/*” symbol.

•ends with “*/” symbol.

Types of comment

2. Comment
Example

/* this program calculate the sum of
two numbers */

#include<iostream> // header file
using namespace std;
int main() // الدالة الرئيسية

{

int x, y , sum ; // declaration part
/* read the two numbers */

cin >> x >> y ;
// calculate the sum

sum = x + y ;
// print the result

cout << sum ;
return 0;

}

3. Variables and Constants

Variables

• Variables are memory location in computer's memory to
store data.

• Each variable should be given a unique name called
identifier, to indicate the memory location in addition to a
data type.

• Variable names are just the symbolic representation of a
memory location.

• Variable value can be changed during program execution

3. Variables and Constants
Variables Declaration

variable_type variable_name;

Example: int a; - Declares a variable named a of type int

int a, b, c; - Declares three variables, each of type int

int a; float b;

3. Variables and Constants
Constants

• Constant is the term that has a unique value and can't be
changed during the program execution.

• Declaration:

1. #define constant_name constant_value

Example: #define PI 3.14

2. const constant_type constant_name = constant_value ;

Example: const float PI = 3.14;

3. Variables and Constants
Variables and Constants Names

• Can be composed of letters (both uppercase and
lowercase letters), digits and underscore '_' only.

• Must begin with a letter or underscore ‘_’.

• Don’t contain space or special character:

(#, *, ?, -, @, !, $, %,&, space,……)

• Can’t be one of the reserved words (they are used by
the compiler so they are not available for re-definition
or overloading.)

3. Variables and Constants
Reserved Words Examples

int float double char

string short long signed

for while if switch

break default do else

case return sizeof static

continue goto true false

const void private struct

class cin cout new

3. Variables and Constants
Reserved Words Examples

• Which of the following variable names are valid/not valid
and why if not?

Valid or notNameValid or notName

10ratearea

Shoubra facultyshoubra_faculty

W#dw234

1233Ahmed

CinA3

Shoubra-facultyA_3

inttemp

Outline

14

1. Initialize const

variable

2. Attempt to modify

variable

Program Output

1 // Fig. 4.7: fig04_07.cpp

2 // A const object must be initialized

3

4 int main()

5 {

6 const int x; // Error: x must be

initialized7

8 x = 7; // Error: cannot modify a

const variable9

10 return 0;

11}

Fig04_07.cpp:

Error E2304 Fig04_07.cpp 6: Constant variable

'x' must be

initialized in function main()

Error E2024 Fig04_07.cpp 8: Cannot modify a

const object in

function main()

*** 2 errors in Compile ***

Notice that const variables must be
initialized because they cannot be modified
later.

4. Basic C++ Data Types

KeywordType
short - int - longInteger

float - double - long double Real

charCharacter

stringString

boolBoolean

4. Basic C++ Data Types
• Real: hold numbers that have fractional part with different
levels of precision, depending on which of the three
floating-point types is used.
Example: float PI = 3.14;

• Character: hold a single character such as ‘a’, ‘A’ and ‘$’.
Example: char ch = ‘a’;

• String: store sequences of characters, such as words or
sentences.
Example: string mystring = "This is a string";

• Boolean: hold a Boolean value. It may be assigned an
integer value 1 (true) or a value 0 (false).
Example: bool status;

5. a Simple Program:
Printing a Line of Text

• std::cout

 Standard output stream object

 “Connected” to the screen

 std:: specifies the "namespace" which cout belongs to
- std:: can be removed through the use of using statements

• <<

 Stream insertion operator

 Value to the right of the operator (right operand) inserted into
output stream (which is connected to the screen)

 std::cout << “Welcome to C++!\n”;

• \

 Escape character

 Indicates that a “special” character is to be output

5. a Simple Program:
Printing a Line of Text

Escape Sequence Description

\n Newline. Position the screen cursor to the

beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next

tab stop.

Outline

19

1. Load <iostream>

2. main

2.1 Print "Welcome"

2.2 Print "to C++!"

2.3 newline

2.4 exit (return 0)

Program OutputWelcome to C++!

1 // Fig. 1.4: fig01_04.cpp

2 // Printing a line with multiple statements

3 #include <iostream>

4

5 int main()

6 {

7 cout << "Welcome ";

8 cout << "to C++!\n";

9

10 return 0; // indicate that program ended

successfully11}

Unless new line '\n' is specified, the text continues
on the same line.

Outline

20

1. Load <iostream>

2. main

2.1 Print "Welcome"

2.2 newline

2.3 Print "to"

2.4 newline

2.5 newline

2.6 Print "C++!"

2.7 newline

2.8 exit (return 0)

Program Output

1 // Fig. 1.5: fig01_05.cpp

2 // Printing multiple lines with a single

statement3 #include <iostream>

4

5 int main()

6 {

7 cout << "Welcome\nto\n\nC++!\n";

8

9 return 0; // indicate that program ended

successfully10}

Welcome

to

C++!
Multiple lines can be printed with one
statement.

6. a Simple Program:
Adding Two Integers

• (stream extraction operator)
 When used with std::cin, waits for the user to input a value

and stores the value in the variable to the right of the operator

 The user types a value, then presses the Enter (Return) key to
send the data to the computer

 Example:

int myVariable;

std::cin >> myVariable;

- Waits for user input, then stores input in myVariable

• = (assignment operator)
 Assigns value to a variable

 Binary operator (has two operands)

 Example:

sum = variable1 + variable2;

Outline

22

.1Load <iostream>

2. main

2.1 Initialize variables
integer1,

integer2, and sum

2.2 Print "Enter

first integer"

2.2.1 Get input

2.3 Print "Enter

second integer"

2.3.1 Get input

2.4 Add variables and
put result into sum

2.5 Print "Sum is"

2.5.1 Output sum

2.6 exit (return 0)

Program Output

1 // Fig. 1.6: fig01_06.cpp

2 // Addition program

3 #include <iostream>

4

5 int main()

6 {

7 int integer1, integer2, sum; //

declaration8

9 cout << "Enter first integer\n"; // prompt

10 cin >> integer1; // read

an integer11 cout << "Enter second integer\n"; // prompt

12 cin >> integer2; // read

an integer13 sum = integer1 + integer2; //

assignment of sum14 cout << "Sum is " << sum << std::endl; //

print sum15

16 return 0; // indicate that program ended

successfully17}

Enter first integer

45

Enter second integer

72

Sum is 117

Notice how std::cin is used to get user
input.

Variables can be output using std::cout << variableName.

std::endl flushes the buffer and
prints a newline.

7. a Simple Program:
Calculating the area of a Circle

include <iostream>
define PI 3.14
using namespace std;
int main ()

{ /* This program asks the user to enter a radius then calculate the

area */

float radius, Area;
cout<< “ Please enter a radius: “ ;
cin>> radius;
Area = PI * radius * radius ;
cout<< “ The area of the circle is ” << Area ;
return 0;
}
 Write a program to calculate the volume of a sphere.

